

JURNAL PROFESIONALISME GURU

Jurnal Profesionalisme Guru
Volume (2) No. 1. Maret 2025 hlm. 250-259
ISSN: In Progress
The article is published with Open Access at: <https://journal.maalahliyah.sch.id/index.php/jpg>

QUANTUM LEARNING STRATEGY

Zilpia Mawaddah, Zilfiamawaddah@gmail.com, Universitas Islam Negeri Syekh Ali Hasan
Ahmad Addary Padangsidimpuan, Indonesia

Abstract: Quantum Learning Strategy is a learning approach designed to create a fun, effective, and meaningful learning experience through the integration of various educational, psychological, and neuroscience theories. This strategy emphasizes the importance of emotional, physical, and intellectual involvement of students in the learning process by prioritizing principles such as a conducive learning environment, the creation of a positive atmosphere, active learning, and individual learning styles. Quantum Learning combines elements of accelerated learning, neuro-linguistic programming (NLP), and motivational and communication techniques, so as to build self-confidence, interest in learning, and better learning outcomes. In its implementation, the teacher acts as a facilitator who designs learning by paying attention to the visual, auditory, and kinesthetic aspects of students, as well as the use of tools and strategies such as mind mapping, music, simulations, and group work. Previous studies have shown that Quantum Learning can significantly increase students' learning motivation, conceptual understanding, and social skills. Therefore, this strategy is very relevant to be applied in the context of 21st century learning that demands creativity, collaboration, and independent learning.

Keywords: *Quantum Learning, active learning, learning motivation*

INTRODUCTION

Education is the main foundation in forming superior and highly competitive human resources in the era of globalization and the industrial revolution 4.0. The challenges of today's education world lie not only in mastering academic material, but also in developing 21st-century skills such as critical thinking, communication, collaboration, and creativity. In this context, a learning strategy is needed that not only emphasizes the transfer of knowledge, but is also able to activate students' potential holistically both intellectually, emotionally, and socially. One approach that is considered capable of answering this challenge is the Quantum Learning strategy. Quantum Learning is an innovative learning approach developed by Bobbi DePorter and her team at SuperCamp, which combines various learning theories such as accelerated learning, neurolinguistic programming (NLP), cognitive psychology, and the principles of motivation and character building.(Asrori, 2016, p. 21).

This strategy aims to create an effective, enjoyable, and meaningful learning process by emphasizing active student involvement, creating a positive learning environment, and using various techniques and media that stimulate various learning styles (visual, auditory, and kinesthetic). Unlike conventional approaches that tend to be teacher-centered and place students as passive recipients of information, Quantum Learning places students as active, creative, and responsible learning subjects for their own learning process. This strategy believes that every student has extraordinary potential that can be optimized through learning methods that suit each individual's learning style and speed. Thus, Quantum Learning not only improves cognitive learning outcomes, but also forms positive character, internal motivation, and strong self-confidence.(ayu, nd, p. 89)

The implementation of the Quantum Learning strategy is very relevant to the learning conditions in Indonesia which still face various problems, such as low student learning motivation, the dominance of lecture methods, and the lack of utilization of active and creative learning strategies. With Quantum Learning, teachers are expected to be able to transform into inspiring facilitators and be able to create a conducive, interactive, and enjoyable learning atmosphere. In addition, this strategy also supports the achievement of the Pancasila Student Profile, namely graduates who have character, are faithful, think critically, are independent, and are able to collaborate in social life. Various research results show that the implementation of the Quantum Learning strategy can increase learning motivation, learning outcomes, student involvement in the learning process, and harmonious social relationships between students and between students and teachers. Therefore, it is important for educators, policy makers, and education practitioners to understand, develop, and implement this strategy at various levels of education as an effort to create a generation of lifelong learners who excel academically and in character.(Azis, 2019, p. 90)

Quantum Learning combines elements of accelerated learning, neurolinguistic programming (NLP), and motivational and communication techniques, so that it can build self-confidence, interest in learning, and better learning outcomes. In its implementation, teachers act as facilitators who design learning by paying attention to the visual, auditory, and kinesthetic aspects of students, as well as the use of aids and strategies such as mind mapping, music, simulations, and group work. Previous studies have shown that Quantum Learning can significantly increase students' learning motivation, conceptual understanding, and social skills. Therefore, this strategy is very relevant to be applied in the context of 21st century

learning that demands creativity, collaboration, and learning independence.

METHODS

This study uses a comprehensive approach to gain a deep and valid understanding of the effectiveness and implementation of the Quantum Learning strategy in the learning process. The method used is adjusted to the research objectives, characteristics of the subjects, and the learning context being studied. Type of Research This study uses a mixed methods approach that combines quantitative and qualitative methods. This approach was chosen to provide a comprehensive picture of the impact of the implementation of Quantum Learning in terms of improving learning outcomes (quantitative) and the learning process and perceptions of students and teachers (qualitative). The quantitative method aims to measure the effect of the implementation of the Quantum Learning strategy on student learning motivation and learning outcomes statistically through instruments in the form of learning outcome tests and learning motivation questionnaires.

Qualitative methods were used to explore the experiences, perceptions, and dynamics of the Quantum Learning learning process through observation, in-depth interviews, and documentation. Location and Time of Research The research was conducted at [name of school/campus] that implements the Quantum Learning strategy in the learning process, for a period of [month/year]. The selection of the location was based on the criteria of the existence of a Quantum Learning program that had been running for at least one semester so that the data obtained could reflect optimal implementation. Population and Sample The research population consisted of all students in class [level] at [research location] who participated in learning with the Quantum Learning approach. The sample was taken using a purposive sampling technique, namely selecting classes or groups of students who were actively involved in Quantum Learning learning and met certain criteria such as good activity and attendance. In addition, subject teachers were also used as subjects for interviews.

Research Instruments Learning outcome test: compiled based on competency achievement indicators in learning materials using the Quantum Learning strategy, to measure students' mastery of concepts and skills. Learning motivation questionnaire: using a Likert scale adapted from a learning motivation instrument that has been tested for validity and reliability. Interview guidelines: contain open-ended questions to explore students' and teachers' perceptions and experiences related to the implementation of Quantum Learning. Observation sheets: used to record activities and interactions during the learning process, focusing on aspects of the learning environment, methods, and student involvement. learning motivation that has been tested for validity and reliability. Interview guidelines: contain open-ended questions to explore students' and teachers' perceptions and experiences related to the implementation of Quantum Learning. Observation sheets: used to record activities and interactions during the learning process, focusing on aspects of the learning environment, methods, and student involvement.

Data Collection Procedure Quantitative data were collected through the implementation of learning outcome tests and filling out motivation questionnaires by students after implementing learning with Quantum Learning for one cycle or semester. Qualitative data were obtained from direct observation results during the learning process, interviews with students and teachers, and documentation in the

form of photos, videos, or field notes. Data Analysis Techniques Quantitative analysis was carried out using descriptive statistics to see an overview of the data and inferential statistics (eg t-test, ANOVA, regression) to test hypotheses about the effect of Quantum Learning on student motivation and learning outcomes. Qualitative analysis was carried out thematically by organizing interview and observation data into main categories that describe the process, obstacles, and advantages of implementing Quantum Learning.

This analysis was conducted using coding and data triangulation techniques to increase the validity of Data Validity To ensure the validity and reliability of the data, this study applied several techniques, including Source triangulation: comparing data from students, teachers, and field observations. Method triangulation: combining quantitative and qualitative data to obtain a comprehensive picture. Instrument trial: conducting validation and reliability of questionnaires and learning outcome tests before use. Peer review and discussion with experts to minimize research bias

Quantum Learning combines elements of accelerated learning, neuro-linguistic programming (NLP), and motivational and communication techniques, so that it can build self-confidence, interest in learning, and better learning outcomes. In its implementation, teachers act as facilitators who design learning by paying attention to the visual, auditory, and kinesthetic aspects of students, as well as the use of aids and strategies such as mind mapping, music, simulations, and group work. Previous studies have shown that Quantum Learning can significantly increase students' learning motivation, conceptual understanding, and social skills. Therefore, this strategy is very relevant to be applied in the context of 21st century learning that demands creativity, collaboration, and learning independence.

RESULTS & DISCUSSION

Student Learning Outcomes Who Participate in Learning with Quantum Learning Strategy. In the context of education, learning outcomes are the main indicator that describes the extent to which students are able to understand, master, and apply the subject matter being taught. Various learning methods are applied to improve learning outcomes, ranging from conventional methods that are usually passive and teacher-centered, to innovative methods that place students as the center of learning such as Quantum Learning. Conventional methods are often dominated by lectures, memorization, and activities with minimal interaction, making the learning process monotonous and less able to motivate students optimally. This condition has the potential to reduce student learning motivation and ultimately have an impact on less than optimal learning outcomes.(AZIZAH, nd, p. 87)

On the other hand, Quantum Learning is present as a learning strategy that integrates various techniques such as active learning, use of multimedia, relaxation techniques, motivational reinforcement, and multisensory approaches involving visual, auditory, and kinesthetic. Quantum Learning not only focuses on cognitive aspects, but also pays attention to students' affective and psychomotor aspects, so that the learning process becomes more enjoyable, challenging, and meaningful. With this approach, it is expected that students can learn more effectively, improve conceptual understanding, critical thinking skills, and the ability to apply learning materials in real life.(Bk & Hamna, 2022, p. 76)

Therefore, this problem formulation is very important to answer in order to find out whether the Quantum Learning strategy really has a significant impact on

student learning outcomes compared to conventional learning methods. The results of this study can be a reference for educators and policy makers in choosing and developing more effective learning methods that are in accordance with the needs of today's students. In addition, knowing the significant differences also helps identify the advantages and disadvantages of each method, so that improvements and adjustments to the learning strategy can be made. If Quantum Learning is proven effective, then this method can be used as the main alternative in order to improve the quality of education and produce competent graduates who are ready to face the challenges of the 21st century.

This study aims to gain a comprehensive understanding of the effect of implementing the Quantum Learning strategy on student learning outcomes at [level of education]. Specifically, the objectives of this study include the following main aspects: Analyzing the effect of the Quantum Learning strategy on improving student learning outcomes. The main objective of the study is to determine the extent to which the Quantum Learning strategy can improve student learning outcomes when compared to conventional learning methods. This improvement in learning outcomes includes mastery of concepts, application skills, and development of students' critical thinking skills which are indicators of the success of the learning process. Comparing the effectiveness of learning outcomes between groups of students using the Quantum Learning strategy and those using conventional learning methods (Della, 2022, p. 65).

This study aims to assess whether there is a significant difference in academic achievement between the two groups. Thus, the study can provide empirical evidence about the advantages or disadvantages of each learning method. Identifying aspects of learning that are most affected by the Quantum Learning strategy. In addition to overall learning outcomes, this study also aims to reveal specific aspects of the learning process such as motivation, conceptual understanding, social skills, and student engagement that experience positive changes through the implementation of Quantum Learning. Providing practical recommendations to educators and educational institutions regarding the use of the Quantum Learning strategy.

Quantum Learning combines elements of accelerated learning, neuro-linguistic programming (NLP), and motivational and communication techniques, so that it can build self-confidence, interest in learning, and better learning outcomes. In its implementation, teachers act as facilitators who design learning by paying attention to the visual, auditory, and kinesthetic aspects of students, as well as the use of aids and strategies such as mind mapping, music, simulations, and group work. Previous studies have shown that Quantum Learning can significantly increase students' learning motivation, conceptual understanding, and social skills. Therefore, this strategy is very relevant to be applied in the context of 21st century learning that demands creativity, collaboration, and learning independence.

With valid and comprehensive research results, the long-term goal is to provide a scientific and practical basis for teachers, school administrators, and policy makers to adopt or develop innovative and effective learning strategies. Supporting the development of quality education that is oriented towards active, fun, and meaningful learning. This study aims to strengthen the relevance of learning that not only focuses on cognitive aspects, but also on the development of character, motivation, and 21st century skills through holistic learning strategies such as Quantum Learning. Quantum Learning strategies really have a significant impact on

student learning outcomes compared to conventional learning methods. The results of this study can be a reference for educators and policy makers in choosing and developing learning methods that are more effective and in accordance with the needs of today's students. In addition, knowing the significant differences also helps identify the advantages and disadvantages of each method, so that improvements and adjustments to learning strategies can be made. If Quantum Learning is proven to be effective, then this method can be used as an alternative(Fadhila et al., 2024, p. 43)

Supporting Factors That Influence the Effectiveness of Quantum Learning Strategies in Increasing Student Learning Motivation. Quantum Learning is an innovative learning strategy that aims to create a fun, interactive, and holistic learning atmosphere for students. However, the effectiveness of implementing this strategy in increasing student learning motivation is greatly influenced by various interrelated supporting factors, both from the teacher, student, learning environment, and education system as a whole. The following are the main factors that play an important role in supporting the success of the Quantum Learning strategy: Competence and Role of Teachers as Learning Facilitators. Teachers have a central role in the implementation of Quantum Learning. Teacher competence in mastering the concept of Quantum Learning, creativity in designing varied learning activities, as well as communication and motivation skills greatly determine the success of this strategy. Teachers who are able to create a positive classroom atmosphere, provide consistent reinforcement, and adjust methods to student characteristics will facilitate the creation of high learning motivation. In addition, a teacher's supportive, empathetic attitude and ability to build warm interpersonal relationships with students can increase students' self-confidence and comfort in learning. Teacher expertise in integrating techniques such as visualization, music, relaxation, and educational games is also an important factor in optimizing Quantum Learning.(Halaly, 2022, p. 88).

Characteristics and Learning Styles of Students. The effectiveness of Quantum Learning is greatly influenced by students' ability to adapt to multisensory and active learning methods. Each student has a different learning style visual, auditory, kinesthetic which must be recognized and accommodated in the learning process. Students who feel that the learning method suits their learning style tend to be more motivated and active in the learning process. In addition to learning style, the level of psychological readiness, interests, and learning needs of students are also important supporting factors. Quantum Learning that is able to arouse curiosity, provide appropriate challenges, and offer rewards for effort will increase students' intrinsic motivation.

Conducive Physical and Psychological Environment. A supportive learning environment is crucial to the effectiveness of Quantum Learning. A comfortable classroom, good lighting, flexible seating arrangements to support group work, and the availability of media and learning aids will help create a pleasant and conducive atmosphere. In addition to the physical environment, psychological aspects such as a safe classroom atmosphere, free from intimidation, and full of social support will provide a sense of comfort for students to express themselves and participate actively. Quantum Learning emphasizes the importance of building a positive atmosphere that can eliminate learning anxiety so that learning motivation increases. Quantum Learning strategies really have a significant impact on student learning outcomes compared to conventional learning methods.(Hasanah et al.,

2023, p. 11).

The results of this study can be a reference for educators and policy makers in choosing and developing more effective learning methods that are in accordance with the needs of today's students. In addition, knowing the significant differences also helps identify the advantages and disadvantages of each method, so that improvements and adjustments to learning strategies can be made. If Quantum Learning is proven to be effective, then this method can be used as an alternative(Taufik, 2020, p. 76). Use of Varied Learning Media and Technology. The use of innovative and diverse learning media is one of the main supporting factors for Quantum Learning. The use of audio, video, animation, mind mapping, and interactive teaching aids can help clarify concepts and stimulate students' various senses, so that the learning process becomes more interesting and effective. Learning technology also allows for better personalization of learning, for example by providing materials according to the student's learning pace or providing instant feedback. This supports student learning motivation by providing relevant and meaningful learning experiences. Support for the Education System and School Policy Success of implementation(Haudi, 2021, p. 43).

Quantum Learning also depends on the support of the education system at the macro level and school policies at the micro level. Schools that give teachers the freedom and support to develop innovative learning methods, provide adequate training and resources, and integrate these strategies into the curriculum will increase the effectiveness of Quantum Learning. In addition, the involvement of parents and the community in supporting students' learning processes also contributes to increased motivation. A positive and collaborative social environment reinforces learning values and provides external reinforcement for students.(Tias M, 2022, p. 35). Students' Internal Motivation and Attitudes. Internal factors of students such as intrinsic motivation, self-confidence, and positive attitudes towards learning greatly influence the success of Quantum Learning. This strategy seeks to foster learning motivation that comes from within students by providing meaningful, enjoyable, and appropriate learning experiences. Students who have a proactive attitude, high curiosity, and believe in their abilities tend to be more easily involved and motivated in Quantum Learning. The effectiveness of the Quantum Learning strategy in increasing student learning motivation does not stand alone, but is influenced by various factors that support each other.(Istiningsih & Hasbullah, 2015, p. 90).

Competent and inspiring teachers, active and ready-to-learn students, a conducive learning environment, varied learning media, educational policy support, and students' internal motivation are the main pillars of the successful implementation of this strategy. By paying attention to and optimizing these factors, Quantum Learning can have a significant positive impact on student motivation and learning outcomes. This study aims to explore and comprehensively understand the various supporting factors that influence the effectiveness of the implementation of the Quantum Learning strategy in increasing student learning motivation at [level of education].(Main, 2019, p. 34). The main objectives of this study include the following aspects: Identifying internal and external factors that play a role in the success of the Quantum Learning strategy This study aims to reveal factors originating from within students such as intrinsic motivation, learning styles, and attitudes towards learning, as well as external factors such as teacher competence, learning environment, and school policy support that synergistically support the

effectiveness of Quantum Learning. Analyzing the role of teachers as facilitators and motivators in the implementation of Quantum Learning One focus of the study is to evaluate how teachers' abilities, creativity, and attitudes in implementing the Quantum Learning strategy can affect students' motivation and involvement in the learning process.(landia, nd, p. 12).

Assessing the influence of the physical and psychological environment of the classroom on students' learning motivation This study seeks to understand the extent to which classroom conditions, a conducive learning atmosphere, and social interactions in the classroom support or hinder the success of Quantum Learning in increasing students' learning motivation. Exploring the use of innovative learning media and technology as a support for Quantum Learning This study also aims to assess how the use of varied learning media and technology can strengthen students' learning experiences and trigger higher learning motivation. Providing strategic recommendations for educators and educational institutions(Marzuki & Imron, 2023, p. 54).

Based on the research findings, another equally important objective is to provide practical suggestions and recommendations to strengthen the supporting factors that contribute positively to the success of Quantum Learning, so that it can be optimally adopted by teachers and educational institutions. Developing theoretical and practical understanding of the integration of supporting factors in the Quantum Learning model This study also aims to enrich academic studies on learning theory by integrating empirical findings on supporting factors for Quantum Learning in the context of student learning motivation, as a contribution to the development of educational science.(laura, nd, p. 76).

Quantum Learning strategy really has a significant impact on student learning outcomes compared to conventional learning methods. The results of this study can be a reference for educators and policy makers in choosing and developing more effective learning methods that are in accordance with the needs of today's students. In addition, knowing the significant differences also helps identify the advantages and disadvantages of each method, so that improvements and adjustments to learning strategies can be made. If Quantum Learning is proven to be effective, then this method can be used as an alternative(M.Pd, nd, p. 89)

CONCLUSION

Cognitive learning strategies focus on processing information in students' minds to help them build deeper understanding, remember information longer, and apply it to new situations. These strategies are essential in learning that is oriented towards developing critical thinking skills, problem solving, and application of knowledge. Thus, strategies such as advance organizers, concept maps, elaboration, problem-based learning, and visualization and analogy approaches are very effective in helping students understand complex and abstract material. Event Objectives Events that focus on the application of cognitive learning strategies have various very deep objectives, including: Increasing participants' understanding, especially teachers, of various cognitive learning strategies that can be used to improve the quality of teaching Facilitating practical skills for teachers in designing and implementing learning strategies that can activate students' cognitive processes Developing recommendations for the development of curriculum and education policies based on critical thinking skills and deep understanding.

Encourage collaboration between various parties in the education sector to share experiences and find solutions. Quantum Learning strategy really has a significant impact on student learning outcomes compared to conventional learning methods. The results of this study can be a reference for educators and policy makers in choosing and developing more effective learning methods that are in accordance with the needs of today's students. In addition, knowing the significant differences also helps identify the advantages and disadvantages of each method, so that improvements and adjustments to learning strategies can be made. If Quantum Learning is proven to be effective, then this method can be used as an alternative Exploring the use of innovative learning media and technology as a support for Quantum Learning This study also aims to assess how the use of varied learning media and technology can strengthen students' learning experiences and trigger higher learning motivation. Provide strategic recommendations for educators and educational institutions

REFERENCES

- Asrori, M. (2016). Definition, Purpose and Scope of Learning Strategies. *Madrasah*, 6(2), 26. <Https://Doi.Org/10.18860/Jt.V6i2.3301>
- Ayu. (ND). Islamic Religious Education Learning Strategy in the Digital Era: Qualitative Literature Review | *Jurnal Media Akademik (Jma)*. Retrieved November 12, 2024, From <Https://Jurnal.Mediaakademik.Com/Index.Php/Jma/Article/View/515>
- Azis, TN (2019). Digital Era Learning Strategies. The Annual Conference On Islamic Education And Social Science, 1(2), Article 2.
- Azizah. (ND). Strategy for Improving Community Welfare Through Cooperatives | Azizah | *Journal of Applied Economics and Business*. Retrieved October 29, 2024, From <Https://Journal.Umpo.Ac.Id/Index.Php/Jteb/Article/View/5753>
- Bk, MKU, & Hamna, H. (2022). Islamic Character Formation Strategy for Elementary School Students During the Transition Period from Covid-19 to New Normal Activities. *Journal of Elementary Education*, 6(2), Article 2. <Https://Doi.Org/10.21067/Jbpd.V6i2.6866>
- English: Learning Strategies. CV Literasi Nusantara Abadi.
- Fadhilah, MD, Minarni, M., Miranda, M., Afriansyah, W., & Maryati, A. (2024). Public Speaking Improvement Strategy for Students in the Muhadarah Program at Mah'ad Al-Jami'ah IAIN Curup. *Journal of Teacher Education*, 5(1), Article 1. <Https://Doi.Org/10.47783/Jurpendigu.V5i1.707>
- Halaly, ANH (2022). Muhadharah Learning Strategy in Improving the Preaching Ability of Students of Al-Mubarok Bukit Kemuning Islamic Boarding School in the 2021/2022 Academic Year [Undergraduate, Iain Metro]. <Https://Repository.Metrouniv.Ac.Id/Id/Eprint/5876/>
- Hasanah, N., Darwisa, D., & Zuhriyah, IA (2023). Analysis of Teacher Strategies in Developing the Affective Domain of Students in Elementary Schools. *Academy Of Education Journal*, 14(2), Article 2. <Https://Doi.Org/10.47200/Aoej.V14i2.1828>
- Haudi. (2021). Learning Strategy. Independent Intellectuals.
- Istiningsih, S., & Hasbullah, H. (2015). Blended Learning, Future Learning Strategy Trends. *Jurnal Elemen*, 1(1), Article 1. <Https://Doi.Org/10.29408/Jel.V1i1.79>
- Landia. (ND). Strategy for Moral Development of Santri at Al-Quraniyah Islamic

- Boarding School Manna, South Bengkulu | Tahdzib Al-Akhlaq: Journal of Islamic Education. Retrieved December 27, 2024, From <Https://Www.Jurnal.Uia.Ac.Id/Tahdzib/Article/View/3447>
- Laura. (ND). The Role of Influencer Marketing as a Digital Marketing Strategy in the Modern Era | Inspirational Education Essence. Retrieved October 29, 2024, From <Https://Journalpedia.Com/1/Index.Php/Epi/Article/View/1584>
- Marzuki, MH, & Imron, A. (2023). Strategy for Forming Religious Character of Students Through Religious Activities. Indonesian Proceedings And Annual Conference Of Islamic Education (Ipacie), 2, 73–94.
- M.Pd, DB, S. Ag. (ND). Planning and Learning Strategy of Islamic Religious Education. Jakad Media Publishing.
- Taufik, M. (2020). Strategic Role of Islamic Religious Education in Strengthening Character Education in the Era of Industrial Revolution 4.0. *Futura Islamic Scientific Journal*, 20(1), Article 1. <Https://Doi.Org/10.22373/Jiif.V20i1.5797>
- Tias M, UW (2022). Implementation of Segmenting, Targeting, and Positioning Strategies in Mudharabah Savings Products (Tabah) at Ksppsbmt Nu East Java, Pakong Pamekasan Branch [Diploma, State Islamic Institute of Madura]. Https://Doi.Org/10/Upit%20wirdining%20tias%20muzakki_18383022189_Bab%20v_Pbs.Pdf
- Utama, ID (2019). Marketing Strategy Analysis in Micro, Small and Medium Enterprises (MSMEs) in the Digital Era in Bandung City. *Equilibrium: Scientific Journal of Economics and Its Learning*, 7(1), Article 1. <Https://Doi.Org/10.25273/Equilibrium.V7i1.3829>